3.51 \(\int \frac{(a-b x^3)^2}{(a+b x^3)^{5/3}} \, dx\)

Optimal. Leaf size=74 \[ \frac{3 b x^4 \left (\frac{b x^3}{a}+1\right )^{2/3} \, _2F_1\left (\frac{2}{3},\frac{4}{3};\frac{7}{3};-\frac{b x^3}{a}\right )}{4 \left (a+b x^3\right )^{2/3}}+\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}} \]

[Out]

(x*(a - b*x^3))/(a + b*x^3)^(2/3) + (3*b*x^4*(1 + (b*x^3)/a)^(2/3)*Hypergeometric2F1[2/3, 4/3, 7/3, -((b*x^3)/
a)])/(4*(a + b*x^3)^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0339424, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {413, 12, 365, 364} \[ \frac{3 b x^4 \left (\frac{b x^3}{a}+1\right )^{2/3} \, _2F_1\left (\frac{2}{3},\frac{4}{3};\frac{7}{3};-\frac{b x^3}{a}\right )}{4 \left (a+b x^3\right )^{2/3}}+\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(a - b*x^3)^2/(a + b*x^3)^(5/3),x]

[Out]

(x*(a - b*x^3))/(a + b*x^3)^(2/3) + (3*b*x^4*(1 + (b*x^3)/a)^(2/3)*Hypergeometric2F1[2/3, 4/3, 7/3, -((b*x^3)/
a)])/(4*(a + b*x^3)^(2/3))

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{\left (a-b x^3\right )^2}{\left (a+b x^3\right )^{5/3}} \, dx &=\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}}+\frac{\int \frac{6 a b^2 x^3}{\left (a+b x^3\right )^{2/3}} \, dx}{2 a b}\\ &=\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}}+(3 b) \int \frac{x^3}{\left (a+b x^3\right )^{2/3}} \, dx\\ &=\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}}+\frac{\left (3 b \left (1+\frac{b x^3}{a}\right )^{2/3}\right ) \int \frac{x^3}{\left (1+\frac{b x^3}{a}\right )^{2/3}} \, dx}{\left (a+b x^3\right )^{2/3}}\\ &=\frac{x \left (a-b x^3\right )}{\left (a+b x^3\right )^{2/3}}+\frac{3 b x^4 \left (1+\frac{b x^3}{a}\right )^{2/3} \, _2F_1\left (\frac{2}{3},\frac{4}{3};\frac{7}{3};-\frac{b x^3}{a}\right )}{4 \left (a+b x^3\right )^{2/3}}\\ \end{align*}

Mathematica [A]  time = 0.0375889, size = 62, normalized size = 0.84 \[ \frac{-3 a x \left (\frac{b x^3}{a}+1\right )^{2/3} \, _2F_1\left (\frac{1}{3},\frac{2}{3};\frac{4}{3};-\frac{b x^3}{a}\right )+5 a x+b x^4}{2 \left (a+b x^3\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - b*x^3)^2/(a + b*x^3)^(5/3),x]

[Out]

(5*a*x + b*x^4 - 3*a*x*(1 + (b*x^3)/a)^(2/3)*Hypergeometric2F1[1/3, 2/3, 4/3, -((b*x^3)/a)])/(2*(a + b*x^3)^(2
/3))

________________________________________________________________________________________

Maple [F]  time = 0.421, size = 0, normalized size = 0. \begin{align*} \int{ \left ( -b{x}^{3}+a \right ) ^{2} \left ( b{x}^{3}+a \right ) ^{-{\frac{5}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^3+a)^2/(b*x^3+a)^(5/3),x)

[Out]

int((-b*x^3+a)^2/(b*x^3+a)^(5/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{3} - a\right )}^{2}}{{\left (b x^{3} + a\right )}^{\frac{5}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)^2/(b*x^3+a)^(5/3),x, algorithm="maxima")

[Out]

integrate((b*x^3 - a)^2/(b*x^3 + a)^(5/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{6} - 2 \, a b x^{3} + a^{2}\right )}{\left (b x^{3} + a\right )}^{\frac{1}{3}}}{b^{2} x^{6} + 2 \, a b x^{3} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)^2/(b*x^3+a)^(5/3),x, algorithm="fricas")

[Out]

integral((b^2*x^6 - 2*a*b*x^3 + a^2)*(b*x^3 + a)^(1/3)/(b^2*x^6 + 2*a*b*x^3 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- a + b x^{3}\right )^{2}}{\left (a + b x^{3}\right )^{\frac{5}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**3+a)**2/(b*x**3+a)**(5/3),x)

[Out]

Integral((-a + b*x**3)**2/(a + b*x**3)**(5/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{3} - a\right )}^{2}}{{\left (b x^{3} + a\right )}^{\frac{5}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)^2/(b*x^3+a)^(5/3),x, algorithm="giac")

[Out]

integrate((b*x^3 - a)^2/(b*x^3 + a)^(5/3), x)